Zingg-0.3.3
  • Welcome to Zingg
  • Step By Step Guide
    • Installation
      • Working with Docker Image
    • Hardware Sizing
    • Configuration
    • Creating training data
      • findTrainingData
      • label
      • findAndLabel
      • Using preexisting training data
      • Exporting labeled data as csv
    • Building and saving the model
    • Finding the matches
    • Linking across datasets
  • Data Sources and Sinks
    • Zingg Pipes
    • Snowflake
    • Cassandra
    • MongoDB
    • Neo4j
    • Parquet
  • Running Zingg on Cloud
    • Running on AWS
    • Running on Azure
    • Running on Databricks
  • Zingg Models
    • Pretrained models
  • Improving Accuracy By Defining Own Functions
  • Generating Documentation
  • Output Scores
  • Security And Privacy
  • Updating Labeled Pairs
  • Reporting bugs and contributing
  • Community
  • Frequently Asked Questions
  • Reading Material
Powered by GitBook
On this page
  1. Data Sources and Sinks

Cassandra

"output" : [
			{
			"name":"sampleTest", 
			"format":"CASSANDRA" ,
			"props": {
				"table":"dataschematest",
				"keyspace":"reifier",
				"cluster":"reifier",
				"spark.cassandra.connection.host":"192.168.0.6"
			},
			"sparkProps": {
				"spark.cassandra.connection.host":"127.0.0.1"
			},
			"mode":"Append"
		}
		]
PreviousSnowflakeNextMongoDB

Last updated 2 years ago