Zingg-0.3.4
  • Welcome to Zingg
  • Step-By-Step Guide
    • Installation
      • Docker
        • Sharing custom data and config files
        • Shared locations
        • File read/write permissions
        • Copying Files To and From the Container
      • Installing From Release
        • Single Machine Setup
        • Spark Cluster Checklist
        • Installing Zingg
        • Verifying The Installation
      • Compiling From Source
    • Hardware Sizing
    • Zingg Runtime Properties
    • Zingg Command Line
    • Configuration
      • Configuring Through Environment Variables
      • Data Input and Output
        • Input Data
        • Output
      • Field Definitions
      • Model Location
      • Tuning Label, Match And Link Jobs
      • Telemetry
    • Working With Training Data
      • Finding Records For Training Set Creation
      • Labeling Records
      • Find And Label
      • Using pre-existing training data
      • Updating Labeled Pairs
      • Exporting Labeled Data
    • Building and saving the model
    • Finding the matches
    • Linking across datasets
  • Data Sources and Sinks
    • Zingg Pipes
    • Snowflake
    • JDBC
      • Postgres
      • MySQL
    • Cassandra
    • MongoDB
    • Neo4j
    • Parquet
    • BigQuery
  • Working With Python
  • Running Zingg on Cloud
    • Running on AWS
    • Running on Azure
    • Running on Databricks
  • Zingg Models
    • Pre-trained models
  • Improving Accuracy
    • Ignoring Commonly Occuring Words While Matching
    • Defining Domain Specific Blocking And Similarity Functions
  • Documenting The Model
  • Interpreting Output Scores
  • Reporting bugs and contributing
    • Setting Zingg Development Environment
  • Community
  • Frequently Asked Questions
  • Reading Material
  • Security And Privacy
Powered by GitBook
On this page
  • Why?
  • Book Office Hours

Welcome to Zingg

Hope you find us useful :-)

NextStep-By-Step Guide

Last updated 2 years ago

Why?

Data silos hurt all business functions - customer analytics, supplier consolidation, risk and compliance, and sales and marketing.

Zingg is a quick and scalable way to build a single source of truth for core business entities. With Zingg, the analytics engineer and the data scientist can quickly integrate data silos and build unified views at scale!

Book Office Hours

If you want to schedule a 30-min call with our team to help you get set up, please select some time directly .

here
Data Silos
# Zingg - Data Mastering At Scale with ML