Zingg
  • Welcome to Zingg
  • Step-By-Step Guide
    • Installation
      • Docker
        • Sharing custom data and config files
        • Shared locations
        • File read/write permissions
        • Copying Files To and From the Container
      • Installing From Release
        • Single Machine Setup
        • Spark Cluster Checklist
        • Installing Zingg
        • Verifying The Installation
      • Compiling From Source
    • Hardware Sizing
    • Zingg Runtime Properties
    • Zingg Command Line
    • Configuration
      • Configuring Through Environment Variables
      • Data Input and Output
        • Input Data
        • Output
      • Field Definitions
      • Model Location
      • Tuning Label, Match And Link Jobs
      • Telemetry
    • Working With Training Data
      • Finding Records For Training Set Creation
      • Labeling Records
      • Find And Label
      • Using pre-existing training data
      • Updating Labeled Pairs
      • Exporting Labeled Data
    • Building and saving the model
    • Finding the matches
    • Linking across datasets
  • Data Sources and Sinks
    • Zingg Pipes
    • Databricks
    • Snowflake
    • JDBC
      • Postgres
      • MySQL
    • AWS S3
    • Cassandra
    • MongoDB
    • Neo4j
    • Parquet
    • BigQuery
    • Exasol
  • Working With Python
  • Running Zingg on Cloud
    • Running on AWS
    • Running on Azure
    • Running on Databricks
  • Zingg Models
    • Pre-trained models
  • Improving Accuracy
    • Ignoring Commonly Occuring Words While Matching
    • Defining Domain Specific Blocking And Similarity Functions
  • Documenting The Model
  • Interpreting Output Scores
  • Reporting bugs and contributing
    • Setting Zingg Development Environment
  • Community
  • Frequently Asked Questions
  • Reading Material
  • Security And Privacy
Powered by GitBook

@2021 Zingg Labs, Inc.

On this page
  1. Running Zingg on Cloud

Running on Databricks

PreviousRunning on AzureNextZingg Models

Last updated 6 months ago

You can run Zingg on Databricks directly using the Databricks notebook interface. All are supported within Databricks.

This uses the Zingg Python API and an

file formats and data sources and sinks
example notebook is available here